
Mathematics of Backpropagation Through Time

vxnuaj (Juan Vera)

January 13, 2025

1 Background

Recurrent Neural Networks (RNNs) are a class of neural networks designed to
capture dependencies over sequences of inputs, for instance, a sequence of words
over time, t ∈ [1, T ].

They differ from Feed-Forward Neural Networks (FFNNs) in both, it’s forward
propagation and backward propagation, the change in the latter caused by the
change in the former.

1.1 Fully Connected Neural Network

A 3-layer FFNN is typically presented as:

(1) H(1) = ϕ(XW
(1)
xh1

+ bh1
)

(2) H(2) = ϕ(H(1)W
(1)
h1h2

+ bh2
)

(3) A(3) = softmax(H(2)W
(2)
h2a

+ bh3
)

where

1. H(i) is the output of the ith layer

2. A is the output of the final softmax activation

3. bhi
is the bias constant for the ith layer

4. X is the input

5. W (i) is the set of weights for the ith layer

6. ϕ and softmax are activation functions for the hidden and output layers
respectively.

1



1.2 Recurrent Neural Network

Adding in recurrence to each layer, defined as H
(i)
t−1W

(i), through an addition
operation, transforms a FFNN into an RNN, presented as:

(1) H
(1)
t = ϕ(X

(1)
t W

(1)
xh1

+H
(1)
t−1W

(1)
h1h1

+ b
(1)
h1

)

(2) H
(2)
t = ϕ(H

(1)
t W

(2)
h1h2

+H
(2)
t−1W

(2)
h2h2

+ b
(2)
h2

)

(3) A
(3)
t = softmax(H

(2)
t W

(3)
h2a

+ b(3)a )

where, regarding the new operands:

1. H
(i)
t−1 is the hidden state for the ith layer

2. W
(i)
hihi

is the set of weights to transform the hidden state, for the ith layer

The 3-Layer RNN can be equivalently referred to as a 2-Layer Stacked RNN,
where ”2-layer” accounts for the set of two recurrent layers.

The hidden state of an RNN is what allows for the model to effectively summa-
rize information over earlier tokens of an input sequence providing the ability
to learn from longer-term dependencies or more generally, time-steps.

RNNs have been more commonly used for language modeling due to their ability
to capture long-term dependencies in sequences. Unlike Markov Models, which
rely on storing exponentially increasing sets of probabilities as the n-gram size

grows, RNNs use a single hidden state matrix H
(i)
t−1 to capture prior context,

allowing for some improved efficiency.

2 Backpropagation Through Time (BPTT)

Let’s assume a 2-Layer Stacked RNN as:

H
(1)
t = ϕ(X

(1)
t W

(1)
xh1

+H
(1)
t−1W

(1)
h1h1

+ b
(1)
h1

)

H
(2)
t = ϕ(H

(1)
t W

(2)
h1h2

+H
(2)
t−1W

(2)
h2h2

+ b
(2)
h2

)

A
(3)
t = softmax(H

(2)
t W

(3)
h2a

+ b(3)a )

with loss L defined as the cross-entropy loss or equivalently as the negative log
likelihood.

Key components and respective dimensions are defined as follows:

2



• Input X
(1)
t ∈ Rn×d

• First Layer Weights W
(1)
xh1

∈ Rd×h1

• First Layer Hidden State Weights W
(1)
h1h1

∈ Rh1×h1

• First Layer Bias bh1
∈ R1×h1

• First Layer Output H
(1)
t ∈ Rn×h1

• First Layer Hidden State H
(1)
t−1 ∈ Rn×h1

• Second Layer Weights W
(2)
h1h2

∈ Rh1×h2

• Second Layer Hidden State Weights W
(2)
h2h2

∈ Rh2×h2

• Second Layer Bias bh2 ∈ R1×h2

• Second Layer Output H
(2)
t ∈ Rn×h2

• Second Layer Hidden State H
(2)
t−1 ∈ Rn×h2

• Third Layer Weights W
(3)
h2a

∈ Rh2×a

• Third Layer Bias ba ∈ R1×a

• Third Layer Output A
(3)
t ∈ Rn×a

where

• hi is the count of hidden units in the ith hidden layer

• n is the batch size

• a is the count of output units, equivalently the size of the one-hot target
vector or vocabulary size.

At first glance, given that an output to the ith layer is dependent on hidden
states at t−1 and those are dependent on the hidden state at t−2, it’s clear that
computing partial derivatives to attain ∂L

∂H(i) and ∂L

∂W
(i)
hihi

will require computing

the chain rule through multiple time steps t such that we end up computing

partial derivatives across H
(i)
t , H

(i)
t−1 . . . H

(i)
t−(T−1) (where T is the total count of

time steps, or equivalently sequence length), for each layer i ∈ [1, 3], or more
generally, i ∈ [1,L] where L is the total number of layers in the RNN.
This results in an exponentially increasing count of gradient factors in the chain
rule as the sequence length, or equivalently total time steps T , increases. Hence,
in the derived equations (Section 2.1) T is constrained to T = 2, to avoid com-
plexity.

3



2.1 BPTT at t = 2 = T

Backpropagation through the stacked RNN at time step t = 2 = T , can be
computed as:

(1)
∂L

∂Z
(3)
t

= A
(3)
t − one-hot(y) ∈ Rn×a

(2)
∂L

∂W
(3)
h2a

=

(
∂L

∂Z
(3)
t

)(
∂Z

(3)
t

∂W
(3)
h2a

)
= (H

(2)
t )T · ∂L

∂Z
(3)
t

∈ Rh2×a

(3)
∂L

∂Z
(2)
t

=

(
∂L

∂Z
(3)
t

)(
∂Z

(3)
t

∂H
(2)
t

)(
∂H

(2)
t

∂Z
(2)
t

)
=

(
∂L

∂Z
(3)
t

· (W (3)
h2a

)T

)
⊙ ϕ′(Z

(2)
t ) ∈ Rn×h2

(4)
∂L

∂W
(2)
h1h2

=

(
∂L

∂Z
(3)
t

)(
∂Z

(3)
t

∂H
(2)
t

)(
∂H

(2)
t

∂Z
(2)
t

)(
∂Z

(2)
t

∂W
(2)
h1h2

)
+

(
∂L

∂Z
(3)
t

)(
∂Z

(3)
t

∂H
(2)
t

)(
∂H

(2)
t

∂Z
(2)
t

)(
∂Z

(2)
t

∂H
(2)
t−1

)(
∂H

(2)
t−1

∂Z
(2)
t−1

)(
∂Z

(2)
t−1

∂W
(2)
h1h2

)

= ((H
(1)
t )T · ∂L

∂Z
(2)
t

) + (H
(1)
t−1)

T ·

((
∂L

∂Z
(2)
t

· (W (2)
h2h2

)

)
⊙ (ϕ′(Z

(2)
t−1))

)
∈ Rh×h2

(5)
∂L

∂W
(2)
h2h2

= (H
(2)
t−1)

T ·

(
∂L

∂Z
(3)
t

)(
∂Z

(3)
t

∂H
(2)
t

)(
∂H

(2)
t

∂Z
(2)
t

)(
∂Z

(2)
t

∂W
(2)
h2h2

)

+(W
(2)
h2h2

)T ·

(
∂L

∂Z
(3)
t

)(
∂Z

(3)
t

∂H
(2)
t

)(
∂H

(2)
t

∂Z
(2)
t

)(
∂Z

(2)
t

∂H
(2)
t−1

)(
∂H

(2)
t−1

∂Z
(2)
t−1

)(
∂Z

(2)
t−1

∂W
(2)
h2h2

)

= (H
(2)
t−1)

T

(
(H

(2)
t−1)

T · ∂L

∂Z
(2)
t

)
+ (W

(2)
h2h2

)T ·

(
(H

(2)
t−2)

T ·

((
∂L

∂Z
(2)
t

· (W (2)
h2h2

)

)
⊙ (ϕ′(Z

(2)
t−1))

))
∈ Rh2×h2

4



(6)
∂L

∂Z
(1)
t

=

(
∂L

∂Z
(3)
t

)(
∂Z

(3)
t

∂H
(2)
t

)(
∂H

(2)
t

∂Z
(2)
t

)(
∂Z

(2)
t

∂H
(1)
t

)(
∂H

(1)
t

∂Z
(1)
t

)

=

(
∂L

∂Z
(2)
t

· (W (2)
h1h2

)T

)
⊙ ϕ′(Z

(1)
t ) ∈ Rn×h

(7)
∂L

∂W
(1)
xh1

=

(
∂L

∂Z
(3)
t

)(
∂Z

(3)
t

∂H
(2)
t

)(
∂H

(2)
t

∂Z
(2)
t

)(
∂Z

(2)
t

∂H
(1)
t

)(
∂H

(1)
t

∂Z
(1)
t

)(
∂Z

(1)
t

∂W
(1)
xh1

)

+

(
∂L

∂Z
(3)
t

)(
∂Z

(3)
t

∂H
(2)
t

)(
∂H

(2)
t

∂Z
(2)
t

)(
∂Z

(2)
t

∂H
(1)
t

)(
∂H

(1)
t

∂Z
(1)
t

)(
∂Z

(1)
t

∂H
(1)
t−1

)(
∂H

(1)
t−1

∂Z
(1)
t−1

)(
∂Z

(1)
t−1

∂W
(1)
xh1

)

= (X
(1)
t )T · ∂L

∂Z
(1)
t

+ (X
(1)
t−1)

T ·

((
∂L

∂Z
(1)
t

· (W (1)
h1h1

)

)
⊙ (ϕ′(Z

(1)
t−1))

)
∈ Rd×h1

(8)
∂L

∂W
(1)
h1h1

= (H
(1)
t−1)

T ·

(
∂L

∂Z
(3)
t

)(
∂Z

(3)
t

∂H
(2)
t

)(
∂H

(2)
t

∂Z
(2)
t

)(
∂Z

(2)
t

∂H
(1)
t

)(
∂H

(1)
t

∂Z
(1)
t

)(
∂Z

(1)
t

∂W
(1)
h1h1

)

+(W
(1)
h1h1

)T ·

(
∂L

∂Z
(3)
t

)(
∂Z

(3)
t

∂H
(2)
t

)(
∂H

(2)
t

∂Z
(2)
t

)(
∂Z

(2)
t

∂H
(1)
t

)(
∂H

(1)
t

∂Z
(1)
t

)(
∂Z

(1)
t

∂H
(1)
t−1

)(
∂H

(1)
t−1

∂Z
(1)
t−1

)(
∂Z

(1)
t−1

∂W
(1)
h1h1

)

= (H
(1)
t−1)

T ·

(
(H

(1)
t−1)

T · ∂L

∂Z
(1)
t

)
+ (W

(1)
h1h1

)T ·

(
(H

(1)
t−2)

T

((
∂L

∂Z
(1)
t

· (W (1)
h1h1

)

)
⊙ (ϕ′(Z

(1)
t−1))

))
∈ Rh1×h1

It’s clear that there is a high count of gradient factors in the chain rule for
computing the partials. For merely 2 recurrent layers, with T = 2, it’s clear
that a problem of vanishing gradients or exploding gradients will come to fruition
fairly quickly as we scale T or the depth of the RNN.

2.1.1 Generalizing BPTT to t ∈ [1, T = 2]

For multiple timesteps, t ∈ [1, T = 2], we can compute the total gradients as a
summation of the gradients at each t:

5



(1)
∂L

∂Z(3)
=

1

T

T∑
t=1

∂L

∂Z3
t

(2)
∂L

∂W
(3)
h2a

=
1

T

T∑
t=1

(
∂L

∂W
(3)
h2a

)
(t)

(3)
∂L

∂Z(2)
=

1

T

T∑
t=1

∂L

∂Z2
t

(4)
∂L

∂W
(2)
hh2

=
1

T

T∑
t=1

(
∂L

∂W
(2)
hh2

)
(t)

(5)
∂L

∂W
(2)
h2h2

=
1

T

T∑
t=1

(
∂L

∂W
(2)
h2h2

)
(t)

(6)
∂L

∂Z(1)
=

1

T

T∑
t=1

∂L

∂Z1
t

(7)
∂L

∂W
(1)
xh

=
1

T

T∑
t=1

(
∂L

∂W
(1)
xh

)
(t)

(8)
∂L

∂W
(1)
hh

=
1

T

T∑
t=1

(
∂L

∂W
(1)
hh

)
(t)

These computations are all generalizable to any T ∈ [1,∞] but the original
forward pass (Sec 1.2, Eq. 1-3) will begin to rely on a larger set of t such that
there will be more gradient factors in the chain rule during backpropagation
purely for a single time step t, as we’ll have to backpropate through a larger set
of hidden states Ht to get the gradients for a single Z or W .

The count of matrix products in the chain rule will continue to scale when
backpropagating through multiple t (see Sec 2.2.1, Eq. 1-8) and multiple layers
of the RNN, ultimately increasing the probability for vanishing and exploding
gradients.

Slightly more formally, assuming we can define ∂L
∂W (i) as a Jacobian Matrix,

if it’s eigenvalue, λi, is > 1, the matrix product will scale up the gradients.
Otherwise, it’ll shrink the gradients.

6



As we backpropagate through more layers with more matrix products, if λ
is consistently > 1 or < 1, the magnitude of the gradients will exponentially
increase or decrease respectively.

2.2 BPTT at t ∈ [1, T → ∞]

As mentioned earlier, the count of matrix products in the chain rule during
BPTT tends to scale exponentially for a larger T or equivalently a larger input
sequence length.

More explicitly, to compute ∂L

∂W
(1)
hh

for any T ∈ [1,∞]:

∂L

∂W
(1)
hh

=

T∑
t=1

(
H

(1)
t−1

)T
·

(
T∏

k=t

∂Z
(3)
k

∂H
(2)
k

·
∂H

(2)
k

∂Z
(2)
k

·
∂Z

(2)
k

∂H
(1)
k

·
∂H

(1)
k

∂Z
(1)
k

)
· ∂Z

(1)
t

∂W
(1)
hh

As can be seen, we begin to rely not only on a
∑

operation but a
∏

which
is terribly counterproductive for stable gradients.

A general solution to these shattered gradients is truncating the computation
of gradients to be through T − τ time steps, where τ < T . This leads to a
decrease in complexity of the backpropagation and also serves as a means to
mitigate overfitting, acting as a form of regularization, as the model is only
learning based on gradients up to time T − τ .

One can also opt for random truncation, as was proposed by Tallec and
Ollivier [1].

References

[1] Tallec, Corentin, and Yann Ollivier. ”Unbiasing Truncated Backpropagation
Through Time.” arXiv, 2017.

7


